- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Yuliang (2)
-
Andino, Christian B. (1)
-
Beussman, Kevin (1)
-
Clark, Elisa (1)
-
Detraux, Damien (1)
-
Fiehn, Oliver (1)
-
Fortin, Chelsea L. (1)
-
Hofsteen, Peter (1)
-
Johansson, Fredrik (1)
-
Kim, Deok-Ho (1)
-
Leonard, Andrea (1)
-
Levy, Shiri (1)
-
Macadangdang, Jesse (1)
-
Madan, Anup (1)
-
Manninen, Tuula (1)
-
McCray, Tara N. (1)
-
Mene, Jonathan (1)
-
Miklas, Jason W. (1)
-
Murry, Charles E. (1)
-
Raftery, Daniel (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Liver disease affects millions globally, and end-stage liver failure is only cured by organ transplant. Unfortunately, there is a growing shortage of donor organs as well as inequitable access to transplants across populations. Engineered liver tissue grafts that supplement or replace native organ function can address this challenge. While engineered liver tissues have been successfully engrafted previously, the extent to which these tissues express human liver metabolic genes and proteins remains unknown. Here, it is built engineered human liver tissues and characterized their engraftment, expansion, and metabolic phenotype at sequential stages post-implantation by RNA sequencing, histology, and host serology. Expression of metabolic genes is observed at weeks 1-2, followed by the cellular organization into hepatic cords by weeks 4-9.5. Furthermore, grafted engineered tissues exhibited progressive spatially restricted expression of critical functional proteins known to be zonated in the native human liver. This is the first report of engineered human liver tissue zonation after implantation in vivo, which can have important translational implications for this field.more » « less
-
Miklas, Jason W.; Clark, Elisa; Levy, Shiri; Detraux, Damien; Leonard, Andrea; Beussman, Kevin; Showalter, Megan R.; Smith, Alec T.; Hofsteen, Peter; Yang, Xiulan; et al (, Nature Communications)null (Ed.)Abstract Mitochondrial trifunctional protein deficiency, due to mutations in hydratase subunit A (HADHA), results in sudden infant death syndrome with no cure. To reveal the disease etiology, we generated stem cell-derived cardiomyocytes from HADHA-deficient hiPSCs and accelerated their maturation via an engineered microRNA maturation cocktail that upregulated the epigenetic regulator, HOPX . Here we report, matured HADHA mutant cardiomyocytes treated with an endogenous mixture of fatty acids manifest the disease phenotype: defective calcium dynamics and repolarization kinetics which results in a pro-arrhythmic state. Single cell RNA-seq reveals a cardiomyocyte developmental intermediate, based on metabolic gene expression. This intermediate gives rise to mature-like cardiomyocytes in control cells but, mutant cells transition to a pathological state with reduced fatty acid beta-oxidation, reduced mitochondrial proton gradient, disrupted cristae structure and defective cardiolipin remodeling. This study reveals that HADHA (tri-functional protein alpha), a monolysocardiolipin acyltransferase-like enzyme, is required for fatty acid beta-oxidation and cardiolipin remodeling, essential for functional mitochondria in human cardiomyocytes.more » « less
An official website of the United States government
